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Transport coefficients associated with the mass flux of impurities immersed in a moderately dense granular
gas of hard disks or spheres described by the inelastic Enskog equation are obtained by means of the Chapman-
Enskog expansion. The transport coefficients are determined as the solutions of a set of coupled linear integral
equations recently derived for polydisperse granular mixtures �Garzó et al., Phys. Rev. E 76, 031304 �2007��.
With the objective of obtaining theoretical expressions for the transport coefficients that are sufficiently accu-
rate for highly inelastic collisions, we solve the above integral equations by using the second Sonine approxi-
mation. As a complementary route, we numerically solve by means of the direct simulation Monte Carlo
method �DSMC� the inelastic Enskog equation to get the kinetic diffusion coefficient D0 for two and three
dimensions. We have observed in all our simulations that the disagreement, for arbitrarily large inelasticity, in
the values of both solutions �DSMC and second Sonine approximation� is less than 4%. Moreover, we show
that the second Sonine approximation to D0 yields a dramatic improvement �up to 50%� over the first Sonine
approximation for impurity particles lighter than the surrounding gas and in the range of large inelasticity. The
results reported in this paper are of direct application in important problems in granular flows, such as
segregation driven by gravity and a thermal gradient. We analyze here the segregation criteria that result from
our theoretical expressions of the transport coefficients.
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I. INTRODUCTION

The theoretical basis for a hydrodynamic description of
ordinary �elastic� gases is well established at low density
using the Boltzmann kinetic equation. However, for moder-
ately dense gases there is no accurate and practical generali-
zation of the Boltzmann equation except for the idealized
hard sphere fluid. For this intermolecular potential, the En-
skog kinetic equation takes into account the dominant posi-
tional corrections to the Boltzmann equation due to excluded
volume effects but, like the Boltzmann equation, neglects
velocity correlations �molecular chaos assumption� among
particles which are about to collide �1�. The Enskog equation
is the only available theory at present for making explicit
calculations of the transport properties of moderately dense
gases and in any case the molecular chaos assumption is
expected to fail only in much denser systems �solid volume
fractions typically are larger than 0.4� �2�. The extension to
mixtures requires a revision of the original Enskog theory for
thermodynamic consistency �revised Enskog theory �RET��
�3�, and its application to hydrodynamics and Navier-Stokes
�NS� transport coefficients was carried out more than
20 years ago �4�.

Early attempts �5–8� to extend the study of López de
Haro, Cohen, and Kincaid �4� to inelastic hard sphere mix-
tures were restricted to nearly elastic systems. In this case,
the effect of inelasticity in the collisions is taken into account
only by the presence of a sink term in the energy balance
equation and, as a consequence, the expressions of the NS
transport coefficients are the same as those obtained for elas-
tic systems. Moreover, those early works also assume energy

equipartition and so the partial temperatures for each species
are equal to the granular temperature. However, as the dissi-
pation increases, different species of a granular mixture have
different partial temperatures Ti and consequently, the energy
equipartition is seriously broken down �Ti�T� �9–11�. The
failure of energy equipartition in granular fluids has also
been confirmed by computer simulations �12� and observed
in real experiments �13� of agitated mixtures. Results in the
literature show that the deviation from equipartition depends
on the size and mass ratios of the particles of each species
and the coefficients of restitution of the system.

A more general extension of the RET to inelastic colli-
sions has been recently carried out by Garzó, Dufty, and
Hrenya �14,15�. This theory covers some of the aspects not
taken into account in previous work �5–8� and extends pre-
vious results derived for monodisperse dense systems
�16,17� and dilute binary mixtures �18�. Specifically, �i� it
goes beyond the weak dissipation limit so that it is expected
to be applicable to a wide range of coefficients of restitution,
�ii� it takes into account the nonequipartition of granular en-
ergy, and �iii� it has been formulated for multicomponent
systems without limits on the number of components. There-
fore, this theory �14� subsumes all previous analysis for both
ordinary and granular gases, which are recovered in the ap-
propriate limits �4,16–18�. Nevertheless, as in the elastic
case �4�, although the results are exact in the first order of
spatial gradients, the explicit form of the NS transport coef-
ficients requires the solution of a set of linear integral equa-
tions. The standard method to get the kinetic and collisional
contributions to transport coefficients and cooling rate con-
sists of approximating the solutions to these integral equa-
tions by Maxwellians �at different temperatures� times trun-
cated Sonine polynomial expansions. For simplicity, usually
only the lowest Sonine polynomial �first Sonine approxima-
tion� is retained �15�, and the results obtained from this ap-
proximation compare very well with Monte Carlo simula-
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tions of the Enskog equation in the case of the shear
viscosity coefficient of a mixture heated by an external ther-
mostat �19�. However, exceptions to this good agreement are
extreme mass or size ratios and strong dissipation, although
these discrepancies could be mitigated in part if one consid-
ers higher-order terms in the Sonine polynomial expansion,
as previous studies in the dilute limit indicate �20�. In fact,
recent works for monodisperse gases have shown that
higher-order terms in Sonine polynomial expansions become
increasingly important in the range of moderate and strong
inelasticities �22,23�, and for this reason it has been of inter-
est to calculate transport coefficients with more refined So-
nine approaches �24,25�. However, the above works were
mainly focused with low-density granular gases and many of
the problems of practical interest in granular gases lie in the
range of moderate densities. For this reason, it is important
to determine the degree of accuracy of at least the first So-
nine approximation compared to the second Sonine approxi-
mation for dense granular gases. Therefore, by testing an
eventual gain of accuracy with higher-order Sonine approxi-
mations, our results in the present work will contribute to the
debate in the literature on the validity of a hydrodynamic
description of granular gases �21�. In addition, the range of
high inelasticities has growing interest in experimental works
�26,27�. Another motivation to improve the evaluation of the
NS transport coefficients lies in the fact that the reference
homogeneous cooling state �HCS� is known to suffer a clus-
tering instability, with intercluster distance inversely propor-
tional to inelasticity �28�. In this context, we believe that a
more accurate description of the HCS in the range of mild
and strong inelasticities may help to refine the understanding
of this interesting instability.

Needless to say, the evaluation of the NS transport coef-
ficients for a dense granular mixture beyond the first Sonine
approximation is quite intricate, due mainly to the coupling
among the different integral equations obeying the transport
coefficients. We will thus make a first approach to the prob-
lem by considering the simple situation of a granular binary
mixture where the concentration of one of the species �of
mass m0 and diameter �0� is very small �impurity or tracer
limit�. Moreover, the tracer limit has been of much interest in
recent literature, for example in granular segregation prob-
lems �29–32�. In the case of a tracer immersed in a dense
granular gas, and as in a previous study for dilute gases �20�,
one can assume that �i� the state of the dense gas �excess
component of mass m and diameter �� is not affected by the
presence of impurities or tracer particles and �ii� one can also
neglect collisions among tracer particles in their correspond-
ing kinetic equation. As a consequence, the velocity distribu-
tion function f of the gas verifies a closed Enskog equation
while the velocity distribution function f0 of the tracer par-
ticles obeys the linear Enskog-Lorentz equation, which
greatly simplifies the development of Chapman-Enskog
theory.

Under the above conditions, since the pressure tensor and
heat flux of the mixture �gas plus impurities� is the same as
that for the gas �16,17�, the mass transport of impurities j0 is
the relevant flux of the tracer problem. To first order in the
spatial gradients, three transport coefficients are involved in
the constitutive equation for j0: the kinetic diffusion coeffi-

cient D0, the mutual diffusion coefficient D, and the thermal
diffusion coefficient DT. Thus, the mass flux j0 has the form
�14�

j0 = −
m0

2

�
D0 � n0 −

mm0

�
D � n −

�

T
DT � T , �1�

where �=mn is the total mass density, n0 is the number den-
sity of the impurities, n is the number density of the gas
particles, and T is the granular temperature. Therefore, the
main goal of this paper is to determine D0, D, and DT up to
the second Sonine approximation in terms of the coefficients
of restitution for the impurity-gas ��0� and gas-gas ��� col-
lisions, the parameters of the system �masses and sizes�, and
the solid volume fraction � occupied by the gas. The calcu-
lations are rather intricate and we have taken advantage of
some previous calculations performed in Ref. �15� for mul-
ticomponent systems. In particular, a previous expression for
the coefficient D0 obtained in the second Sonine approxima-
tion for a dilute gas ��=0� is recovered �20�. Analogously to
the previous analysis of the shear viscosity coefficient �19�,
kinetic theory predictions for the diffusion coefficient D0 are
compared with numerical solutions of the Enskog equation
by using the well-known direct simulation Monte Carlo
�DSMC� method �33�. In the simulations, the diffusion coef-
ficient is computed from the mean-square displacement of
impurities immersed in a dense granular gas undergoing the
homogeneous cooling state �20�. Although the problem is
time dependent, a transformation to a convenient set of di-
mensionless time and space variables �34� allows one to get
a stationary diffusion equation where the coefficient D0 can
be measured in the hydrodynamic regime �times large com-
pared with the characteristic mean free time�.

Finally, once the explicit expression of the transport coef-
ficients associated with the mass flux are at hand, a segrega-
tion criterion based on thermal diffusion is derived. This cri-
terion shows the transition between the well-known Brazil-
nut effect �BNE� and the reverse Brazil-nut effect �RBNE�
by varying the different parameters of the system. This study
complements a previous analysis recently carried out by one
of the authors �32� for a driven �heated� dense gas. As ex-
pected, our results show that the form of the phase-diagrams
for the BNE-RBNE transition depends sensitively on the
value of gravity relative to the thermal gradient and so it is
possible to switch between both states for given values of the
parameters of the system.

The plan of the paper is as follows. In Sec. II we describe
the problem we are interested in and offer a short summary
of the set of inelastic Enskog equations for the gas and the
impurities. Section III deals with the application of the
Chapman-Enskog method �35� to solve the Enskog-Lorentz
equation and get the set of coupled linear integral equations
verifying the transport coefficients D0, D, and DT. Then,
these integral equations are approximately solved up to the
second Sonine approximation. Some technical details of the
calculations are given in Appendixes A and B. In Sec. IV we
illustrate the dependence of the transport coefficients on the
parameters of the system and compare the theoretical results
for the coefficient D0 obtained in the first and second Sonine
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approximations with those obtained by means of Monte
Carlo simulations of the Enskog-Lorentz equation for disks
�d=2� and spheres �d=3�. Segregation by thermal diffusion
is studied in Sec. V and the paper is closed in Sec. VI with a
brief discussion of the results derived.

II. DESCRIPTION OF THE PROBLEM

Let us consider a binary mixture of inelastic particles with
collision rules according to the smooth hard sphere model.
Our system is described by the revised Enskog kinetic equa-
tion �36,37� and, as a starting point, we consider in this work
the special case where the concentration of one of the com-
ponents �the tracer or intruder� is very small compared to that
of the other �solvent or excess� component. In this limit, the
state of the granular gas �the solvent� is not affected by the
presence of the tracer particles and also the mutual interac-
tions among the tracer particles can be neglected as com-
pared with their interactions with the particles of the solvent.
At a kinetic theory level, this implies that the velocity distri-
bution function of the solvent �f� and of the tracer particles
�f0� obey, respectively, the closed �nonlinear� Enskog equa-
tion and the �linear� Enskog-Lorentz equation. This is for-
mally equivalent to studying an impurity or intruder in a
dense granular gas, and this will be the terminology used
here. Since in the tracer limit the pressure tensor and the heat
flux of dense binary mixtures are the same as those of the
pure excess component �in the absence of the tracer�, here
we will be interested in the evaluation of the transport coef-
ficients defining the mass flux of the intruder.

Let us start by offering a short review on some basic
aspects of the set of inelastic Enskog equations for the gas
and the intruder. The granular dense gas is composed by
smooth inelastic hard disks �d=2� or spheres �d=3� of mass
m and diameter �. The inelasticity of collisions among all
pairs is accounted for by a constant coefficient of normal
restitution � �0���1� that only affects the translational
degrees of freedom of grains. The granular gas is in the
presence of a gravitational field g=−gêz, where g is a posi-
tive constant and êz is the unit vector in the positive direction
of the z axis. At moderate densities, we assume that the time
evolution of the one-particle velocity distribution function of
the gas f�r ,v , t� is given by the Enskog equation �36,37�

��t + v · � + g ·
�

�v
� f�r,v,t� = J�v�f�t�, f�t�� , �2�

where the Enskog collision operator J�v � f , f� is

J�r1,v1�f�t�, f�t�� � �d−1	 dv2	 d�̂���̂ · g12���̂ · g12�

� ��−2	�r1,r1 − ��f�r1,v1�;t�

�f�r1 − �,v2�;t� − 	�r1,r1

+ ��f�r1,v1;t�f�r1 + �,v2;t�� . �3�

Here, � is the hard sphere diameter, �̂ is a unit vector along
their line of centers, � is the Heaviside step function, and
g12=v1−v2 is the relative velocity. The primes on the veloci-

ties denote the initial values 
v1� ,v2�� that lead to 
v1 ,v2� fol-
lowing a binary collision in the hard sphere model:

v1� = v1 −
1

2
�1 + �−1���̂ · g12��̂ , �4�

v2� = v2 +
1

2
�1 + �−1���̂ · g12��̂ .

The quantity 	(r1 ,r1+� �n�t�) is the pair correlation function
at contact as a functional of the nonequilibrium density field
n�r , t�, where

n�r,t� =	 dv f�r,v,t� . �5�

In addition, the flow velocity and the granular temperature
are defined, respectively, as

u�r,t� =
1

n�r,t� 	 dv vf�r,v,t� , �6�

T�r,t� =
m

dn�r,t� 	 dv V2f�r,v,t� , �7�

where V�r , t��v−u�r , t� is the peculiar velocity. The mac-
roscopic balance equations for number density n, momentum
density mu, and energy density �d /2�nT follow directly from
Eq. �2� by multiplying with 1, mv, and 1

2mv2 and integrating
over v:

Dtn + n � · u = 0, �8�

Dtu + �mn�−1 � · P = g , �9�

DtT +
2

dn
�� · q + Pij� jui� = − 
T , �10�

where Dt=�t+u ·� is the material time derivative. The mi-
croscopic expressions for the pressure tensor P, the heat flux
q, and the cooling rate 
 in terms of the velocity distribution
function f can be found in Refs. �16,17�. Their explicit forms
will be omitted here for brevity.

Let us suppose now that an impurity or intruder of mass
m0 and diameter �0 is added to the gas. As said before, the
presence of the intruder does not have any effect on the state
of the gas, so that its velocity distribution function is still
determined by the Enskog equation �2�. In addition, the mac-
roscopic flow velocity and temperature for the mixture com-
posed by the dense gas plus the intruder are the same as
those for the gas, namely, they are given by Eqs. �6� and �7�,
respectively. Under these conditions, the velocity distribution
function f0�r ,v , t� of the intruder satisfies the linear Enskog-
Lorentz equation

� �

�t
+ v · � + g ·

�

�v
� f0�r,v,t� = J0�v�f0�t�, f�t�� , �11�

where the collision operator J0�v � f0�t� , f�t�� is now
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J0�r1,v1�f0�t�, f�t�� = �̄d−1	 dv2	 d�̂ ���̂ · g12���̂ · g12�

� ��0
−2	0�r1,r1 − �̄�f0�r1,v1�;t�

�f�r1 − �̄,v2�;t�

− 	0�r1,r1 + �̄�f0�r1,v1;t�

�f�r1 + �̄,v2;t�� . �12�

Here, �̄= �̄�̂, �̄= ��0+�� /2, �0 �0��0�1� is the coeffi-
cient of restitution for intruder-gas collisions, and 	0 is the
pair correlation function for intruder-gas pairs at contact. The
precollisional velocities are given by

v1� = v1 −
m

m0 + m
�1 + �0

−1���̂ · g12��̂ ,

v2� = v2 +
m0

m0 + m
�1 + �0

−1���̂ · g12��̂ . �13�

As shown in Ref. �11�, the operator J0�v � f0 , f� is the same as
that of an elastic impurity ��0=1� with an effective mass

m0
* = m0 +

1 − �0

1 + �0
�m0 + m� . �14�

The number density for the intruder is

n0�r,t� =	 dv f0�r,v,t� . �15�

The intruder may freely lose or gain momentum and energy
in its interactions with the particles of the gas and, therefore,
these are not invariants of the collision operator J0�v � f0 , f�.
Only the number density n0 is conserved, whose continuity
equation is directly obtained from Eq. �11�:

Dtn0 + n0 � · u +
� · j0

m0
= 0, �16�

where j0 is the mass flux for the intruder, relative to the local
flow u,

j0 = m0	 dv Vf0�r,v,t� . �17�

At a kinetic level, an interesting quantity is the local tem-
perature of the intruder, defined as

T0�r,t� =
m0

dn0�r,t� 	 dv V2f0�r,v,t� . �18�

This quantity measures the mean kinetic energy of the in-
truder. As confirmed by computer simulations �12�, experi-
ments �13�, and kinetic theory calculations �9�, the global
temperature T and the temperature of the intruder T0 are in
general different, so that the granular energy per particle is
not equally distributed between both components of the sys-
tem.

III. MASS TRANSPORT OF IMPURITIES

In order to compute the mass flux j0 of impurities to first
order in the spatial gradients, we solve the Enskog-Lorentz
equation by means of the Chapman-Enskog �CE� expansion
�35�. This method, nowadays extensively used and tested in a
variety of problems in the field of rapid granular flows �38�,
assumes the existence of a normal solution in which all the
space and time dependence of f0 occurs through the hydro-
dynamic fields n0, n, u, and T. The CE procedure generates
the normal solution explicitly by means of an expansion in
the gradients of the fields:

f0 = f0
�0� + �f0

�1� + ¯ , �19�

where � is a formal parameter measuring the nonuniformity
of the system. The application of the CE method to the En-
skog equation for polydisperse granular mixtures has been
carried out very recently �14,15�. Using those results, we
consider here the tracer limit �x0�n0 /n→0� for the linear
integral equations defining the transport coefficients associ-
ated with the mass flux. The first-order contribution j0

�1� to
the mass flux is given by Eq. �1�, where the kinetic diffusion
coefficient D0, the mutual diffusion coefficient D, and the
thermal diffusion coefficient DT are defined as

DT = −
m0

�d
	 dv V · A0�V� , �20�

D0 = −
�

m0n0d
	 dv V · B0�V� , �21�

D = −
1

d
	 dv V · C0�V� . �22�

The quantities A0�V�, B0�V�, and C0�V� are the solutions
of the following set of coupled linear integral equations �14�:

1

2

�0� �

�V
· �VA0� −

1

2

�0�A0 − J0

�0��A0, f �0�� = A0 + J0
�0�

��f0
�0�,A� , �23�

1

2

�0� �

�V
· �VB0� − J0

�0��B0, f �0�� = B0, �24�

1

2

�0� �

�V
· �VC0� − n

�
�0�

�n
A0 − J0

�0��C0, f �0�� = C0 + J0
�0�

��f0
�0�,C� , �25�

where 
�0� is the cooling rate to zeroth order �local homoge-
neous cooling state� and J0

�0��X ,Y� is the operator

J0
�0��v1�X,Y� = 	0

�0��̄d−1	 dv2	 d�̂ ���̂ · g12���̂ · g12�

���0
−2X�V1��Y�V2�� − X�V1�Y�V2�� , �26�

where 	0
�0� is the intruder-gas pair correlation function at ze-

roth order. The inhomogeneous terms of the integral equa-
tions �23�–�25� are defined by
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A0,i�V� =
1

2
Vi

�

�V
· �Vf0

�0�� −
p

�

�

�Vi
f0

�0� +
1

2
K0,i� �

�V
· �Vf �0��� ,

�27�

B0�V� = − Vf0
�0�, �28�

C0,i�V� = − m−1�p

�n

�

�Vi
f0

�0� −
�1 + ��−d

	0
�0�T

� �
0

��
�

T,n0

K0,i�f �0�� .

�29�

In Eqs. �27�–�29�, the pressure p is given by

p = nT�1 + 2d−2	�0���1 + ��� , �30�

���0 /� is the size ratio, and 
0 is the chemical potential of
the intruder. Furthermore,

� �
�d/2

2d−1d��d/2�
n�d �31�

is the solid volume fraction and the operator K0,i�X� is de-
fined as

K0,i�X� = �̄d	0
�0� 	 dv2	 d�̂ ���̂ · g12���̂ · g12��̂i

���0
−2f0

�0��V1��X�V2�� + f0
�0��V1�X�V2�� . �32�

In writing Eqs. �23�–�25�, use has been made of the expres-
sion of the first-order distribution function f �1� of gas par-
ticles. Its form has been derived in Refs. �16,17� and reads

f �1� = A · �T + C · �n + D:�u + E � · u , �33�

where the coefficients A, C, D, and E are functions of the
peculiar velocity V and the hydrodynamic fields. According
to Eqs. �23�–�25�, only the coefficients A and C are in-
volved in the evaluation of the transport coefficients D0, D,
and DT. The linear integral equations verifying A and C as
well as their expressions up to the second Sonine approxi-
mation are given in Appendix A.

It is worthwhile to remark that the quantities A0 and C0
associated with the intruder are coupled with their corre-
sponding counterparts A and C of the host gas through the
integral equations �23� and �25�, respectively. A direct con-
sequence of this coupling is that the mass flux of the intruder
�1� inherits gradient terms ��n and �T� from those of the
autonomous host equations. Moreover, the external field does
not occur in the constitutive equation �1� for the mass flux.
This is due to the particular form of the gravitational force.

IV. SECOND SONINE POLYNOMIAL APPROXIMATION

For practical purposes, the integral equations �23�–�25�
can be solved by using a Sonine polynomial expansion. With
the motivations explained in the Introduction, our goal here
is to determine the diffusion coefficients D0 and D and the
thermal diffusion coefficient DT up to the second Sonine ap-
proximation. In this case, the quantities A0, B0, and C0 are
approximated by

A0�V� → − f0,M�V�� �

n0T0
VDT + a0S0�V�� , �34�

B0�V� → − f0,M�V�� m0
2

�T0
VD0 + b0S0�V�� , �35�

C0�V� → − f0,M�V�� m0

n0T0
VD + c0S0�V�� , �36�

where

S0�V� = �1

2
m0V2 −

d + 2

2
T0�V , �37�

and f0,M�V� is a Maxwellian distribution at the temperature
T0 of the intruder, i.e.,

f0,M�V� = n0� m0

2�T0
�d/2

exp�−
m0V2

2T0
� . �38�

The coefficients a0, b0, and c0 are defined as

a0 = −
2

d�d + 2�
m0

n0T0
3 	 dv S0�V� · A0�V� , �39�

b0 = −
2

d�d + 2�
m0

n0T0
3 	 dv S0�V� · B0�V� , �40�

c0 = −
2

d�d + 2�
m0

n0T0
3 	 dv S0�V� · C0�V� . �41�

The transport coefficients D0, D, and DT as well as the sec-
ond Sonine coefficients a0, b0, and c0 are determined by
substitution of Eqs. �34�–�36� into the integral equations
�23�–�25�, multiplication of these equations by m0V and by
S0�V�, and integration over velocity. The details are given in
Appendixes B and C and only the final expressions will be
presented here.

The second Sonine approximations D0�2�, D�2�, and
DT�2� can be written, respectively, as

D0�2� = F��,�0,m0/m,�0/�,��D0�1� , �42�

D�2� = G��,�0,m0/m,�0/�,��D�1� , �43�

DT�2� = H��,�0,m0/m,�0/�,��DT�1� , �44�

where F, G, and H are nonlinear functions of the mass and
size ratios, the coefficients of restitution, and the solid vol-
ume fraction. The explicit forms of F, G, and H are given by
Eqs. �B19�, �B24�, and �B17�, respectively. In Eqs.
�41�–�44�, D0�1�, D�1�, and DT�1� refer to the first Sonine
approximations to D0, D, and DT, respectively. Their explicit
expressions were already determined in Ref. �15� for arbi-
trary composition. In terms of the transport coefficients, the
new calculations in the present work are the functions F, G,
and H. In the tracer limit �x0→0�, the expressions for D0�1�,
D�1�, and DT�1� reduce, respectively, to

MASS TRANSPORT OF IMPURITIES IN A MODERATELY… PHYSICAL REVIEW E 79, 041303 �2009�

041303-5



D0�1� =
�T

m0
2�

�

�1
* −

1

2

*

, �45�

D�1� =
n0T

m0�

Y1
*

�1
* −

1

2

*

, �46�

DT�1� =
n0T

��

X1
*

�1
* − 
*

. �47�

Here, �=n�d−1�2T /m is an effective collision frequency, �
=T0 /T is the temperature ratio,


* =

�0�

�
=

�2��d−1�/2

d��d/2�
	�0��1 − �2� �48�

is the �reduced� cooling rate, and the reduced quantities X
1
*,

Y
1
*, and �

1
* are given by Eqs. �B15�, �B21�, and �C1�, respec-

tively.
In general, the first and second Sonine approximations for

the transport coefficients of the mass flux have a complex
dependence on the coefficients of restitution, the solid frac-
tion and the mass and size ratios. Thus, before analyzing this
dependence, it is instructive to consider some special limits.
In the elastic limit ��=�0=1� of a three-dimensional system,
one recovers previous results for a gas mixture of elastic hard
spheres �39,40�. Moreover, in the case of mechanically
equivalent particles �m0=m, �0=�, �=�0�, as expected, one
gets DT�2�=0, D0�2�=−�m /x0m0�D�2�, and so

j0
�1� = −

nm0
2

�
D0�2� � x0, �49�

where x0=n0 /n is the mole fraction of impurities. Moreover,
in the case of a dilute gas ��=0�, the expression for the
kinetic diffusion coefficient D0�2� coincides with the one
previously derived by one of the authors �20� by assuming
that the solvent is in the homogeneous cooling state. All
these results confirm the self-consistency of the results re-
ported in this paper.

V. SOME ILLUSTRATIVE EXAMPLES AND COMPARISON
WITH MONTE CARLO SIMULATIONS

The expressions �42�–�44� for the �reduced� transport co-
efficients D0�2� /D0�1�, D�2� /D�1�, and DT�2� /DT�1� depend
on many parameters: 
m0 /m ,�0 /� ,� ,�0 ,��, or equivalently
�11� 
m

0
* /m ,�0 /� ,� ,��, where m

0
* is defined by Eq. �14�.

This complexity exists in the elastic limit as well �4�, except
for the dependence on the coefficients of restitution. Thus, to
show more clearly the influence of dissipation on the trans-
port coefficients we normalize them with respect to their val-
ues in the elastic limit. Also, for simplicity, we take the sim-
plest case of the common coefficient of restitution �=�0 so
that the parameter space has four independent quantities:

m0 /m ,�0 /� ,� ,��.

In order to get the explicit dependence of the transport
coefficients on the above four parameters one has to give the

forms of the pair correlation functions 	�0� and 	0
�0�. In the

three-dimensional case �d=3�, a good approximation for 	�0�

is provided by the Carnahan-Starling form �41�

	�0� =

1 −
1

2
�

�1 − ��3 , �50�

while the intruder-gas pair correlation function is given by
�42�

	0
�0� =

1

1 − �
+ 3

�

1 + �

�

�1 − ��2 + 2
�2

�1 + ��2

�2

�1 − ��3 ,

�51�

where we recall that �=�0 /� is the diameter ratio. The ex-
pression for the chemical potential of the intruder consistent
with the approximation �51� is �43�


0

T
= C3 + ln n0 − ln�1 − �� + 3�

�

1 − �

+ 3�2�ln�1 − �� +
��2 − ��
�1 − ��2 �

− �3�2 ln�1 − �� +
��1 − 6� + 3�2�

�1 − ��3 � , �52�

where C3 is a constant. For a two-dimensional gas �d=2�,
	�0� and 	0

�0� are approximately given by �44�

	�0� =

1 −
7

16
�

�1 − ��2 , �53�

	0
�0� =

1

1 − �
+

9

8

�

1 + �

�

�1 − ��2 . �54�

The chemical potential is now given by �45�


0

T
= C2 + ln n0 − ln�1 − �� +

1

4
�� 9�

1 − �
+ ln�1 − ���

+
1

8
�2���7 + 2��

�1 − ��2 − ln�1 − ��� , �55�

where C2 is a constant.
In Figs. 1–3, we plot the transport coefficients for inelas-

tic hard spheres �d=3� as functions of the coefficient of res-
titution for two different systems. Each transport coefficient
has been reduced with respect to its elastic value consistently
obtained in each approximation. The dashed lines refer to the
first Sonine approximation while the solid lines correspond
to the second Sonine approximation. We observe that in gen-
eral the first Sonine polynomial approximation quantitatively
differs from the second Sonine approach as the dissipation
increases for sufficiently small values of the mass ratio m0 /m
and/or the size ratio �0 /�. For these cases, the first Sonine
approximation is not sufficient to capture the influence of
dissipation on mass transport. However, the predictions of
the first Sonine correction improve significantly as m0 /m
and/or �0 /� increases so that the former accurately describes
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the mass transport in this range of values of the mass and
size ratios, even for strong inelasticity. These findings on the
convergence of the Sonine polynomial expansion are quite
similar to those obtained for elastic systems �40� and for
granular gases at low-density �20�.

To check the reliability of the first and second Sonine
approximations, we have performed Monte Carlo simula-
tions of the Enskog equation for the dense granular gas with
the tracer particles. We have extracted from these simulations
the kinetic diffusion coefficient D0 of impurities in a granular
dense gas in the homogeneous cooling state. This coefficient
can be obtained from the mean square displacement of the
intruder particle after a time interval t as �20,46�

�

�t

�r�t� − r�0��2� =

2dD0

n
, �56�

where �r�t�−r�0�� is the distance traveled by the intruder
from t=0 until time t. Equation �56� is the Einstein form of
the diffusion coefficient. This relation can be used also in
Monte Carlo simulations of granular gases to measure the
diffusion coefficient �see, for example, a previous work on
transport of impurities in a dilute granular gas in Ref. �20��.
In an unbounded system like ours, the DSMC method has

two steps that are repeated in each time iteration: the first
step takes care of the particles drift and the second step ac-
counts for the collisions among particles. The extension of
the DSMC method to study the diffusion of impurities in a
dense granular gas in the HCS requires the changes J�f , f�
→	J�f , f� and J0�f0 , f�→	0J0�f0 , f�. For the DSMC method
to work appropriately, the time step needs to be small in
comparison with the microscopic time scale of the problem
�which is set by the collision frequency �� and we also need
a sufficiently high number of simulated particles �33�. Thus,
we have used in the simulations of this work a time step �t
=2.5�10−4�−1 and N=2�106 simulated particles for each
species �47�. To our knowledge and since we are interested in
the complete range of values of �, we present the first
DSMC data on dense granular gases for coefficients of res-
titution as low as �=0.1. More details on the application of
the DSMC method �33� to this diffusion problem can be
found in Ref. �20�.

If a hydrodynamic description �or normal solution in the
context of the CE method� applies, then the diffusion coeffi-
cient D0�t� depends on time only through its dependence on
the temperature T�t�. In this case, after a transient regime, the
reduced diffusion coefficient D0��� /D0�1� achieves a time-
independent value �20�. Here, we compare the steady state
values of D0��� /D0�1� obtained from Monte Carlo simula-
tions with the theoretical predictions given by the first and
second Sonine approximations.

Let us consider first the dilute gas limit ��=0�. Figure 4
shows the reduced diffusion coefficient D0��� /D0�1� for
m0 /m=1 /8 and �0 /�=1 /2 for disks �d=2� and spheres
�d=3�. According to the theory results obtained in the previ-
ous figures, one expects that in the Lorentz gas limit �small
values of the mass and size ratios� both Sonine approxima-
tions differ significantly for strong inelasticity �this means
obviously that it is not possible that both of them simulta-
neously show good agreement with the exact solution of the
problem�. For the sake of completeness, we have also in-
cluded the results recently derived for binary mixtures �25�
from a new method based on a modified version of the first
Sonine approximation which replaces the Maxwell-
Boltzmann distribution weight function �used in the standard
Sonine approximations� by the homogeneous cooling state

FIG. 2. �Color online� Reduced mutual diffusion coefficient
D��� /D�1� as a function of the �common� coefficient of restitution
�=�0 for the systems �m0 /m=4, �0 /�=2� �a� and �m0 /m=0.5,
�0 /�=0.8� �b� in the case of a three-dimensional gas with �=0.1.
The solid lines correspond to the second Sonine approximation
while the dashed lines refer to the first Sonine approximation. Here,
D�1� is the elastic value of the kinetic diffusion coefficient consis-
tently obtained in each approximation.

FIG. 3. �Color online� Reduced thermal diffusion coefficient
DT��� /DT�1� as a function of the �common� coefficient of restitu-
tion �=�0 for the systems �m0 /m=4, �0 /�=2� �a� and �m0 /m
=0.5, �0 /�=0.8� �b� in the case of a three-dimensional gas with
�=0.1. The solid lines correspond to the second Sonine approxima-
tion while the dashed lines refer to the first Sonine approximation.
Here, DT�1� is the elastic value of the thermal diffusion coefficient
consistently obtained in each approximation.

FIG. 1. �Color online� Reduced kinetic diffusion coefficient
D0��� /D0�1� as a function of the �common� coefficient of restitu-
tion �=�0 for the systems �m0 /m=4, �0 /�=2� �a� and �m0 /m
=0.5, �0 /�=0.8 �b� in the case of a three-dimensional gas with �
=0.1. The solid lines correspond to the second Sonine approxima-
tion while the dashed lines refer to the first Sonine approximation.
Here, D0�1� is the elastic value of the kinetic diffusion coefficient
consistently obtained in each approximation.
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distribution �25,48�. This method partially eliminates the ob-
served disagreement �for strong dissipation� between com-
puter simulations �49� and theoretical results for the heat flux
transport coefficients �25�. The explicit expression for the
coefficient D0 obtained from the modified Sonine method is
displayed in Appendix D. The simulation data corresponding
to d=3 for ��0.5 were reported in Ref. �20� while those
corresponding to d=2 and d=3 for ��0.5 have been ob-
tained in this work. It is quite apparent that, while the second
Sonine approximation agrees very well with simulation data,
the standard and modified first Sonine approximations fail
for strong dissipation. This agreement is especially signifi-
cant in the case of hard spheres. Thus, as expected, the So-
nine polynomial expansion exhibits a poor convergence for
sufficiently small values of the mass and size ratios. To as-
sess the influence of density on these trends, the ratio
D0��� /D0�1� is plotted in Fig. 5 for m0 /m=1 /5 and �0 /�
=1 /2 in the case of a moderately dense gas ��=0.2�. As
before, both first Sonine approximations underestimate the
diffusion coefficient �the discrepancy being more important
in the case of the standard than the modified first Sonine
approximation� while the predictions of the second Sonine
approach show an excellent agreement with simulation data
in the whole range of values of the coefficient of restitution.
All these results clearly confirm the accuracy of the second
Sonine approximation, even for low values of � and small
values of the mass and size ratios. Figure 6 shows that in the
opposite limit of large values of the mass and size ratios
�Rayleigh gas limit�, the first and second Sonine approxima-

tions are practically indistinguishable for moderately large
inelasticity �say for instance, ��0.5� and both approaches
provide a general good agreement with Monte Carlo simula-
tions. However, at very high inelasticity, the second Sonine
approximation very slightly underestimates the diffusion co-
efficient compared to the DSMC data and the first Sonine
approximation. We have performed more series of simula-
tions �not shown here� with different values of the ratios
m0 /m and �0 /� confirming similar trends as those in the
figures shown in this section for both cases m0 /m�1 and/or
�0 /��1 and m0 /m�1 and/or �0 /��1 �the data are avail-
able to the reader upon request to the authors�.

VI. SEGREGATION BY THERMAL DIFFUSION

As an application of the previous results, this section is
devoted to the study of segregation, driven by both gravity
and temperature gradients, of an intruder in a granular dense
gas. Segregation and mixing of dissimilar grains is one of the
most interesting problems in granular mixtures not only from
a fundamental point of view but also from a more practical
point of view. This problem has spawned a number of im-
portant experimental, computational, and theoretical works
in the field of granular media �50�. Although several mecha-
nisms have been proposed in the literature, the problem is
not completely understood yet. Among the different mecha-
nisms, thermal diffusion becomes the most relevant if the
system resembles the conditions of a granular gas. In this
case, kinetic theory tools have proven to be quite useful to

(a) (b)

FIG. 4. �Color online� Reduced kinetic diffusion coefficient D0��� /D0�1� as a function of the �common� coefficient of restitution
�=�0 for m0 /m=1 /8, �0 /�=1 /2, and �=0. The left panel is for hard spheres �d=3� while the right panel is for hard disks �d=2�. The solid
lines correspond to the second Sonine approximation, the dashed lines refer to the first Sonine approximation, and the dotted lines are the
modified Sonine approximation. The symbols are the results obtained from Monte Carlo simulations. Here, D0�1� is the elastic value of the
thermal diffusion coefficient consistently obtained in each approximation.

(a) (b)

FIG. 5. �Color online� Reduced kinetic diffusion coefficient D0��� /D0�1� as a function of the �common� coefficient of restitution
�=�0 for m0 /m=1 /5, �0 /�=1 /2, and �=0.2. The left panel is for hard spheres �d=3� while the right panel is for hard disks �d=2�. The
solid lines correspond to the second Sonine approximation, the dashed lines refer to the first Sonine approximation, and the dotted lines are
the modified Sonine approximation. The symbols are the results obtained from Monte Carlo simulations. Here, D0�1� is the elastic value of
the thermal diffusion coefficient consistently obtained in each approximation.
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analyze the motion of the intruder. A short previous analysis
on this problem, but when the system is heated by a stochas-
tic driving force, has been reported in Ref. �32�.

Thermal diffusion is caused by the relative motion of the
components of a mixture due to the presence of a tempera-
ture gradient. As a result of this motion, a steady state is
finally reached in which the separating effect arising from
thermal diffusion is balanced by the remixing effect of ordi-
nary diffusion �51�. Under these conditions, the thermal dif-
fusion factor � characterizes the amount of segregation par-
allel to the temperature gradient. Our goal here is to
determine � in a nonconvecting �u=0� steady state with gra-
dients only in the vertical direction �z axis� for simplicity. In
this case, � is defined as

− ��z ln T = �z ln�n0

n
� . �57�

If we assume that gravity and the thermal gradient point in
parallel directions �i.e., the bottom plate is hotter than the top
plate�, then the intruder rises with respect to the fluid par-
ticles if ��0 while the intruder falls with respect to the fluid
particles if ��0. If the impurity is heavier than the gas
particles, the former situation is referred to as the Brazil-nut
effect while the latter is called the reverse Brazil-nut effect.
A sketch of the geometry of the segregation problem studied
here is given in Fig. 7. The key point here is that logically
the segregation condition �57� will depend on the mass flux
transport coefficients of the intruder. We remind the reader of
the features, some of them described in the Introduction, that
the transport coefficients we use here are able to capture
�compared to alternative coefficients in theoretical works on
segregation by other authors �29,30��. These features are a
consequence of the consistent development of the Chapman-
Enskog theory for dense granular mixtures �14�. Due to this,
and in addition to the gain of accuracy with the use of the
second order term in the Sonine expansion, we expect that
our expressions �45–47� will be useful in practical problems
and applications of granular segregation �53�. We determine
below the explicit expression of this segregation criterion.

As said before, let us consider a steady base state with no
flow �u=0� and with a temperature gradient parallel to the
direction of gravity �in this case, the z direction�. According
to Eq. �16�, the mass flux j0 vanishes in this state �because

u=0� and there are no contributions to the pressure tensor
except for those coming from the hydrostatic pressure term,
i.e., Pij = p�ij, where p is given by Eq. �30�. As a conse-
quence, the momentum balance equation �9� becomes

�p

�z
=

�p

�T
�zT +

�p

�n
�zn = − �g . �58�

Finally, the constitutive equation for the mass flux is given
by Eq. �1� with �→�z. Using the fact that j0,z=0 and taking
into account Eqs. �1� and �57�, the factor � can be written as

� =
�DT* − �p* + g*��D0

* + D*�

�D0
* , �59�

where we have introduced the reduced transport coefficients
DT*= ��� /n0T�DT, D

0
*= �m0

2� /�T�D0, and D*= �m0� /n0T�D.
Moreover, p*= p /nT=1+2d−2�1+��	�0��,

� = p* + ���p* = 1 + 2d−2�1 + ��	�0���1 + �
�

��
ln��	�0���

�60�

and

g* =
�g

n��T/�z�
� 0 �61�

is a dimensionless parameter measuring the gravity relative
to the thermal gradient. This parameter measures the compe-

FIG. 7. �Color online� Sketch of the segregation problem ana-
lyzed in Sec. VI. The small circles represent the particles of the
dense gas while the large circles are the intruders. The BNE
�RBNE� effect corresponds to the situation in which the intruder
rises �falls� to the top �bottom� plate.

(a) (b)

FIG. 6. �Color online� Reduced kinetic diffusion coefficient D0��� /D0�1� as a function of the �common� coefficient of restitution
�=�0 for m0 /m=2, �0 /�=2, and �=0.2. The left panel is for hard spheres �d=3� while the right panel is for hard disks �d=2�. The solid
lines correspond to the second Sonine approximation and the dashed lines refer to the first Sonine approximation. The symbols are the results
obtained from Monte Carlo simulations. Here, D0�1� is the elastic value of the thermal diffusion coefficient consistently obtained in each
approximation.
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tition between these two mechanisms �g and �zT� on segre-
gation.

As expected, the dependence of � on the parameter space
of the problem is quite intricate. Regarding the dependence
of thermal diffusion on gravity, we observe that for given
values of the mass and size ratios, the coefficient of restitu-
tion and density, it is possible to switch between RBNE
���0� and BNE ���0� by changing the value of gravity
relative to the thermal gradient. This is an interesting effect
not captured in previous works on segregation �29,30,52�. As
an illustration of this effect, Fig. 8 presents plots of the sec-
ond Sonine approximation for � as a function of the �re-
duced� gravity for a three-dimensional system with �=0.2,
�0 /�=m0 /m=2 and three different values of the �common�
coefficient of restitution �. It is apparent that, for the case
analyzed here, the RBNE is dominant at small values of �g*�
while the opposite happens as the dimensionless gravity in-
creases.

The condition �=0 provides the segregation criterion for
the transition BNE⇔RBNE. Since � and D

0
* are positive,

then, according to �59�, sgn���=sgn��DT*− �p*+g*��D
0
*

+D*��. As a consequence, the segregation criterion is

�DT* = �p* + g*��D0
* + D*� . �62�

As expected, when m0=m, �0=�, and �=�0, the system
�intruder plus gas� is monodisperse and the two species do
not segregate. This is consistent with Eq. �62� since in this
limit case DT*=D

0
*+D*=0 so that �=0 for any value of �

and �. On the other hand, in the case of a dilute gas ��
=0�, one has �= p*=1 and the condition �62� when g*=0 in
the first Sonine approximation becomes

m0

m
=

T0

T
. �63�

This segregation condition agrees with some recent results
derived from the Boltzmann equation �31,54�. It must be
remarked that, due to the lack of energy equipartition, the
condition m0 /m=T0 /T is rather complicated since it involves
all the parameters of the system.

We consider now dense systems. For the sake of concrete-
ness, we assume that the intruder is larger than the gas par-
ticles ��0���. Figure 9 shows a phase diagram in the

�m0 /m ,�0 /�� plane for a moderately dense gas ��=0.1� in
the absence of gravity and two values of the coefficient of
restitution. Also, for comparison the corresponding phase
diagram obtained from the first Sonine approximation is
plotted for the case �=0.8. We observe that, in the absence
of gravity, the main effect of dissipation is to reduce the size
of the BNE. This conclusion qualitatively agrees with the
results derived in the driven gas case �32�. However, at a
quantitative level, the influence of dissipation observed here
is less important than that obtained in the heated case. More-
over, although the first Sonine approximation reproduces
qualitatively the trends of the phase diagram, the former
overestimates the predictions of the second Sonine approxi-
mation, especially when the mass and size ratios are in-
creased.

In some previous theoretical studies �29,30,52�, it has
been assumed that the global temperature of the bed does not
vary with height so that the effect of �zT on segregation is
neglected. In this limit ��g*�→��, the condition �62� reduces
to D

0
*+D*=0. The form of the phase diagram in the limit

�g*�→� is shown in Fig. 10 for �=0.2 and three values of
the coefficient of restitution. The result derived by Jenkins

FIG. 8. �Color online� The thermal diffusion factor � versus
�reduced� gravity �g*� for �=0.2 and three values of the �common�
coefficient of restitution �=1, 0.8, and 0.5.

FIG. 9. �Color online� Phase diagram for BNE-RBNE for
�=0.1 in the absence of gravity and for two values of the �com-
mon� coefficient of restitution �. Points above the curve correspond
to ��0 �BNE� while points below the curve correspond to ��0
�RBNE�. The dashed line is the result obtained from the first Sonine
approximation for �=0.8.

FIG. 10. �Color online� Phase diagram for BNE-RBNE for
�=0.2 in the absence of thermal gradient ��g*�→�� for three values
of �=1, 0.8 �dashed line�, and 0.5 �dash-dotted line�. The dotted
line refers to the results obtained by Jenkins and Yoon �29� for an
elastic system.
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and Yoon �29� in the elastic case from a simple kinetic theory
�namely, just a particular case from the perspective of the
theory presented in this work� has also been included for
comparison. In contrast to the case g*=0, we observe that
the RBNE regime appears essentially now for both large
mass ratio and/or small size ratio. With respect to the influ-
ence of inelasticity, Fig. 10 shows that the phase diagram is
practically independent of the value of the coefficient of res-
titution since the three curves collapse in a common curve.
We also observe that our results differ from those obtained
by Jenkins and Yoon �29�, especially for large size ratios.

VII. CONCLUSIONS

In this paper we have analyzed the mass transport of im-
purities in a moderately dense granular gas described by the
inelastic Enskog kinetic equation. This is perhaps the sim-
plest example of transport in a multicomponent granular gas
since the tracer particles �impurities� are enslaved to the
granular gas �solvent� and there are fewer parameters. Nev-
ertheless, it involves, as we explained, many situations of
practical interest in the study of granular gases. In the tracer
limit, once the state of the solvent is well characterized, the
mass flux j0 associated with impurities is the relevant flux of
the problem. To first order in the spatial gradients, j0 is given
by Eq. �1� where D0 is the kinetic diffusion coefficient, D is
the mutual diffusion coefficient, and DT is the thermal diffu-
sion coefficient.

The main goal of this paper has been to determine these
three transport coefficients as functions of the temperature,
the density, and the different mechanical parameters of the
system, namely, the masses and particle diameters and the
�constant� coefficients of restitution for the impurity-gas and
gas-gas collisions. As for elastic collisions �4�, the coeffi-
cients D0, D, and DT are given in terms of the solutions of a
set of coupled linear integral equations �14�. A practical
evaluation of the above diffusion coefficients is possible by
using a Sonine polynomial expansion and approximate re-
sults are not limited to weak inelasticity. Here, D0, D, and DT

have been determined in the first �one polynomial� and sec-
ond �two polynomials� Sonine approximations and progress
was possible here thanks to previous results obtained by us-
ing the �standard� first Sonine approximation �15� for the full
Navier-Stokes transport coefficients of polydisperse dense
mixtures. The present study complements and extends previ-
ous works on diffusion in granular dilute �20� and dense �55�
gases and provides explicit expressions for D0, D, and DT

beyond the first Sonine approximation �15�.
Comparison of the theoretical results derived for D0, D,

and DT between the first and second Sonine approximations
shows significant discrepancies between the two approaches
for values of the mass ratio m0 /m and/or the size ratio �0 /�
smaller than 1 while the quality of the first Sonine correction
improves with increasing values of m0 /m and �0 /�. These
trends are quite similar to those previously found for tracer
diffusion in an ordinary �elastic� dense gas �40� and in a
granular dilute gas �20�. Moreover, to check the reliability of
the different theoretical approaches, a comparison with
Monte Carlo simulations of the Enskog equation for the co-

efficient D0 has been carried out for disks �d=2� and spheres
�d=3�. The comparison with simulation data shows the su-
periority of the second Sonine approximation over other ap-
proaches �the standard first Sonine approximation and a
modified version of the first Sonine correction recently pro-
posed �25,48��, since the agreement of D0�2� with numerical
results is excellent, even for strong dissipation �see for in-
stance Figs. 4 and 5� and very small values of the mass and
size ratios.

With respect to the segregation problem, which has of
growing interest in the research community in the field, we
have shown that the explicit knowledge of the three diffusion
coefficients allows one to compute the thermal diffusion fac-
tor �. This quantity provides a convenient measure of the
separation or segregation generated by a temperature gradi-
ent in a multicomponent system. According to the symmetry
of the problem �sketched in Fig. 7�, when ��0 the intruder
tends to climb to the top of the sample against gravity
�Brazil-nut effect� while if ��0 the intruder tends to move
at the bottom of the system �reverse Brazil-nut effect,
RBNE�. The understanding of the BNE-RBNE transition is
of central interest in the field of granular matter mainly due
to its practical and industrial importance. The analysis car-
ried out here provides an extension of a previous analysis
�32� for a heated dense gas in the first Sonine approximation.
Our results show that the influence of dissipation on the
BNE-RBNE phase diagram is much more significant in the
absence of gravity ��g*�=0� than in the opposite limit ��g*�
=��. In fact, as Fig. 10 shows, when the segregation of the
intruder is essentially driven by gravity, the inelasticity of
collisions has not discernible influence on the form of the
BNE-RBNE phase diagram. From the discussion in previous
sections, we expect the segregation criteria presented here to
be more accurate in comparison with the criteria derived in
other works �29,30�. Future research work using a DSMC
code adapted to the problem of segregation, molecular dy-
namics �MD� simulations, and eventually, experiments, will
help us to test our theory �and previous alternative theories�
in real problems. We are currently working on DSMC and
MD simulations.

An important issue is the usefulness of the expressions for
the NS transport coefficients derived here. As already said in
a previous work �25�, the NS hydrodynamic equations them-
selves may or may not be limited with respect to inelasticity,
depending on the particular granular flow considered. In par-
ticular, tracer diffusion in the HCS at very low values of the
coefficient of restitution is only possible for very small sys-
tems due to the spontaneous formation of velocity vortices
and density clusters. Moreover, in most problems of practical
interest �such as steady states for a granular gas heated or
sheared from the boundaries�, the strength of the spatial gra-
dients is set by inelasticity so that the NS description holds
only in the quasielastic limit �56�. Nevertheless, in spite of
the above cautions, the NS equations are still appropriate for
a wide class of flows. Some of them correspond to the sta-
bility analysis of small perturbations of the HCS �57�, super-
sonic flows past a wedge �58�, and hydrodynamic profiles of
systems vibrated vertically �59� where comparisons between
theory and experiments have shown both qualitative and
quantitative agreement for moderate values of dissipation
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�say, for instance, ��0.8�. Consequently, the NS equations
with the transport coefficients derived here can be considered
still as a useful theory for a wide class of rapid granular
flows, although more limited than for ordinary gases.

One of the main limitations of the present study is its
restriction to the tracer or intruder limit. This precludes the
possibility of analyzing the influence of composition on the
mass transport. The extension of the results derived here to
finite mole fractions is an interesting open problem. More-
over, it would also be interesting to evaluate the expressions
for the remaining transport coefficients of the mixture �shear
viscosity, bulk viscosity, thermal conductivity, etc.� for a va-
riety of mass and diameter ratios. This evaluation would al-
low one to assess the quality of the approximate Sonine
method for solving the integral equations for the transport
coefficients through a comparison with computer simula-
tions. Previous results obtained for the shear viscosity coef-
ficient �19� have shown a good agreement. Moreover, the
knowledge of the full NS transport coefficients for a dense
granular binary mixture allows us to determine the disper-
sion relations for the hydrodynamic equations linearized
about the homogeneous cooling state. Some previous results
�60� based on the Boltzmann kinetic equation have shown
that the resulting equations exhibit a long-wavelength insta-
bility for three of the modes. The objective now is to extend
to higher densities this previous linear stability analysis for a
dilute gas �60� and compare the theoretical predictions with
MD simulations for the homogenous cooling state. We plan
to carry out such studies in the near future.
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APPENDIX A: FIRST-ORDER VELOCITY DISTRIBUTION
FUNCTION OF THE GAS

The first-order velocity distribution function f �1� of the gas
particles has the form �16,17�

f �1� = A · �T + C · �n + D:�u + E � · u . �A1�

Only the coefficients A and C are involved in the evaluation
of the mass transport j0

�1� of the intruder. These quantities
verify the linear integral equations �9,17�

1

2

�0� �

�V
· �VA� −

1

2

�0�A − �J�0��A, f �0�� + J�0��f �0�,A��

= A , �A2�

1

2

�0� �

�V
· �VC� − n

�
�0�

�n
A − �J�0��C, f �0�� + J�0��f �0�,C�� = C ,

�A3�

where J�0��X ,Y� is the linearized collision operator

J�0��v1�X,Y� = 	�0��d−1	 dv2	 d�̂ ���̂ · g���̂ · g�

���−2X�V1��Y�V2�� − X�V1�Y�V2�� , �A4�

and the inhomogeneous terms of the integral equations �A2�
and �A3� are defined by

Ai�V� =
1

2
Vi

�

�V
· �Vf �0�� −

p

�

�

�Vi
f �0� +

1

2
Ki� �

�V
· �Vf �0��� ,

�A5�

Ci�V� = − Vf �0� − m−1 �

�Vi
f �0��p

�n
− �1 +

1

2
�

� ln 	�0�

��
�Ki�f �0�� .

�A6�

Here, the operator Ki�X� is given by

Ki�X� = �d	�0� 	 dv2	 d�̂ ���̂ · g���̂ · g��̂i

���−2f �0��V1��X�V2�� + f �0��V1�X�V2�� .

The functions A and C are zero in the first Sonine ap-
proximation �16,17�. In the second Sonine approximation,
these quantities are given by

A�V� → − fM�V�aS�V�, C�V� → − fM�V�cS�V� ,

�A7�

where

fM�V� = n� m

2�T
�d/2

exp�−
mV2

2T
� �A8�

and

S�V� = �1

2
mV2 −

d + 2

2
T�V . �A9�

Substitution of �A7� into Eqs. �A2� and �A3� gives a set of
closed equations for a and c. Multiplication of these equa-
tions by S�V� and integration over V yield a set of algebraic
equations whose solution is �16,17�

a =

1 + 3
2d−3

d + 2
�	�0��1 + ��2�2� − 1�

�T2��
�
* − 2
*�

, �A10�

c =
1

nT�
��

�
* −

3

2

*�−1

��aT2�
�
*

	�0� − 3
2d−3

d + 2
��	�0� + ����1 − �2�� ,

�A11�

where �=n�d−1�2T /m, 
* is given by �48�,

� �
�

��
��	�0�� , �A12�

and
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�
�
* =

8

d�d + 2�
��d−1�/2

�2��d/2�
	�0��1 + ��

��d − 1

2
+

3

16
�d + 8��1 − ��� . �A13�

It must be remarked that all the above expressions have been
obtained by neglecting some non-Gaussian contributions to
the zeroth-order distribution f �0�. The influence of these non-
Gaussian terms is significant only for quite extreme values of
dissipation �49�.

FIRST AND SECOND SONINE APPROXIMATIONS FOR
THE MASS FLUX OF IMPURITIES

In this appendix we determine the transport coefficients
D0, D, and DT associated with the mass flux in the first and
second Sonine approximations. In this case, the functions
A0, B0 and C0 are given by Eqs. �34�–�36�, respectively
while A and C are approximated by �A7�. Let us start with
the thermal diffusion coefficient DT, which is defined by Eq.
�20�. To get it, we substitute first A0 and A by their Sonine
approximations �34� and �A7�, respectively, and then we
multiply the integral equation �23� by m0V and integrate over
velocity. After some algebra, the result is

��1 − 
�0��DT +
n0T0

2

�
�2a0 = Z1, �B1�

where

Z1 = −
x0T0

2

m
�3a −

x0pm0

m�
�1 −

�T0

m0p
�

−
1

2d�
	 dv m0ViK0,i� �

�V
· �Vf �0��� , �B2�

and we have introduced the collision frequencies

�1 = −
1

dn0T0
	 dv m0V · J0

�0��f0,MV, f �0�� , �B3�

�2 = −
1

dn0T0
2 	 dv m0V · J0

�0��f0,MS0, f �0�� , �B4�

�3 = −
1

dn0T0
2 	 dv m0V · J0

�0��f0
�0�, fMS� . �B5�

The operator K0,i�X� is defined in Eq. �32�. The collision
integral appearing on the right-hand side of Eq. �B2� involv-
ing this operator has been evaluated in Ref. �15� with the
result

1

2d�
	 dv m0ViK0,i� �

�V
· �Vf �0��� = −

1

2

x0T

m
�1 + ��dM0�	0

�0�

��1 + �0� , �B6�

where ���0 /� and M0�m0 / �m+m0�. If only the first So-
nine correction is retained �which means a0=a=0�, the solu-
tion to Eq. �B1� is

DT�1� = − x0��1 − 
�0��−1� pm0

m2n
�1 −

�T0

m0p
�

−
1

2

M0

m
�1 + ��d�	0

�0��1 + �0�� . �B7�

Here, DT�1� denotes the first Sonine approximation to DT. To
close the determination of DT up to the second Sonine ap-
proximation, we multiply now Eq. �23� by S0�V� and inte-
grate over velocity to get

��4 − 2
�0��a0 +
�

n0T0
2 ��5 − 
�0��DT = Z2, �B8�

where

Z2 = − a�6 +
1

T0
−

1

d�d + 2�
m0

n0T0
3 	 dv S0,iK0,i� �

�V
· �Vf �0��� ,

�B9�

�4 = −
2

d�d + 2�
m0

n0T0
3 	 dv S0 · J0

�0��f0,MS0, f �0�� ,

�B10�

�5 = −
2

d�d + 2�
m0

n0T0
2 	 dv S0 · J0

�0��f0,MV, f �0�� , �B11�

�6 = −
2

d�d + 2�
m0

n0T0
3 	 dv S0 · J0

�0��f0
�0�, fMS0� . �B12�

The collision integral of �B9� involving the operator K0,i is
given by �15�

1

d
	 dv S0,i�V�K0,i� �

�V
· �Vf �0��� = −

1

2
x0

nM0T2

m

��1 + ��d	0
�0���1 + �0��M�

M0
��d + 2��M0

2 − 1�

+ �2d − 5 − 9�0�M0M + �d − 1 + 3�0 + 6�0
2�M2�

+ 6M2�1 + �0�2� , �B13�

where ��T0 /T is the temperature ratio and M �m /m0+m.
In reduced units and by using matrix notation, Eqs. �B1� and
�B8� can be rewritten as

��1
* − 
* �2�2

*

�5
* − 
*

�2
�4

* − 2
*��DT*

a0
* � = �X1

* − �2a*�3
*

X2
* − a*�6

* � .

�B14�

Here, �
i
*=�i /�, DT*= �m� /x0T�DT, a

0
*=T2�a0, a*=T2�a, and

X1
* = − � m0p

mnT
− �� +

1

2
�1 + ��dM0	0

�0���1 + �0� ,

�B15�
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X2
* = �−1 +

1

2�d + 2�
M0

2

M
�1 + ��d�−3	0

�0���1 + �0�

��M�

M0
��d + 2��M0

2 − 1�

+ �2d − 5 − 9�0�M0M + �d − 1 + 3�0 + 6�0
2�M2�

+ 6M2�1 + �0�2� . �B16�

The solution to Eq. �B14� provides the explicit expression of
the second Sonine approximation DT�2� to DT. It can be writ-
ten in the form �44�, where the dimensionless function H is

H =
�1

* − 
*

X1
*

��4
* − 2
*��X1

* − �2�3
*a*� − �2�2

*�X2
* − �6

*a*�

�2
*�
* − �5

*� + ��1
* − 
*���4

* − 2
*�
.

�B17�

The determination of the first and second Sonine approxi-
mations to the diffusion coefficients D0 and D follows simi-
lar mathematical steps as those made before for DT. Here,
only the final results will be provided. The kinetic diffusion
coefficient D0 is obtained from the integral equation �24� by
substitution of the Sonine approximation �35�. In matrix no-
tation, the coefficients D0 and b0 obey the equation

��1
* −

1

2

* �2�2

*

�5
* − 
*

�2
�4

* −
3

2

*��D0

*

b0
* � = ��

0
� , �B18�

where D
0
*= �m0

2� /�T�D0 and b
0
*=T�b0. The solution to �B18�

gives the second Sonine approximation to D0. It can be writ-
ten as Eq. �42� where the dimensionless function F is

F = �1 +
�2

*�
* − �5
*�

��1
* −

1

2

*���4

* −
3

2

*��

−1

. �B19�

The corresponding matrix equation defining the coeffi-
cients D and c0 is

��1
* −

1

2

* �2�2

*

�5
* − 
*

�2
�4

* −
3

2

*��D*

c0
* � = �Y1

* − �2�3
*c*

Y2
* − �6

*c*
� ,

�B20�

where D*= �m0� /n0T�D and c
0
*=nT�c0. Moreover, the inho-

mogeneous terms are given by

Y1
* = 
*DT*�1 + �

� ln 	�0�

��
� −

m0

mT

�p

�n
+

1

2
M0��1 + �0�

��1 + �

�
� �

��
�
0

T
�

T,n0

, �B21�

Y2
* = 
*a0

*�1 + �
� ln 	�0�

��
� +

1

2�d + 2�
M2

M0

���1 + �0�
�

��
�
0

T
�

T,n0


��d + 8�M0
2

+ �7 + 2d − 9�0�M0M + �2 + d + 3�0
2 − 3�0�M2��

+ 3M2�1 + �0�2�3 + ��d + 2�M0
2 + �2d − 5 − 9�0�M0M

+ �d − 1 + 3�0 + 6�0
2�M2��2 − �d + 2���1 + ��� , �B22�

where c*=nT�c, �=m0T /mT0 is the mean square velocity of
the gas particles relative to that of the intruder particle, and

a0
* =

�−2�
* − �5
*��X1

* − �2�3
*a*� + ��1

* − 
*��X2
* − �6

*a*�

�2
*�
* − �5

*� + ��1
* − 
*���4

* − 2
*�
.

�B23�

The second Sonine approximation D�2� can be easily ob-
tained from Eq. �B20� and the result can be written in the
form �43� where G is

G =

�1
* −

3

2

* − �2�2

*�Y2
* − �6

*c*��Y1
* − �2�3

*c*�−1

�1
* −

3

2

* + �2

*�
* − �5
*���1

* −
1

2

*�−1 .

�B24�

Finally, in order to get the explicit dependence of the
transport coefficients on dissipation, one still needs to com-
pute the temperature ratio �=T0 /T. It is determined from the
condition 


0
*=
*, where 


0
* is �15�


0
* =

4��d−1�/2

d��d/2�
� �̄

�
�d−1

	0
�0�M�1 + �

�
�1/2

�1 + �0�

��1 −
M

2
�1 + ���1 + �0�� . �B25�

APPENDIX C: COLLISION INTEGRALS

In this appendix we obtain the expressions for the colli-
sion frequencies �

i
*. Except for �

2
* and �

3
*, the other quanti-

ties were already determined �15� for arbitrary composition.
For the sake of completeness, we display now their explicit
forms in the tracer limit �x1→0�. They are given by

�1
* =

2��d−1�/2

d��d/2�
� �̄

�
�d−1

	0
�0�M�1 + �0��1 + �

�
�1/2

, �C1�

�4
* =

��d−1�/2

d�d + 2���d/2�
� �̄

�
�d−1

	0
�0�M�1 + �0�� �

1 + �
�3/2

��A − �d + 2�
1 + �

�
B� , �C2�

�5
* =

2��d−1�/2

d�d + 2���d/2�
� �̄

�
�d−1

	0
�0�M�1 + �0�� �

1 + �
�1/2

B ,

�C3�
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�6
* = −

��d−1�/2

d�d + 2���d/2�
� �̄

�
�d−1

	0
�0� M

2

M0
�1 + �0�� �

1 + �
�3/2�C + �d + 2�

1 + �

�
D� , �C4�

where

A = 2M2�1 + �

�
�2�2�0

2 −
d + 3

2
�0 + d + 1��d + 5 + �d + 2��� − M�1 + ��
��−2��d + 5� + �d + 2�����11 + d��0 − 5d − 7�

− �−1�20 + d�15 − 7�0� + d2�1 − �0� − 28�0� − �d + 2�2�1 − �0�� + 3�d + 3��2�−2�d + 5 + �d + 2��� + 2��−1

��24 + 11d + d2 + �d + 2�2�� + �d + 2��−1�d + 3 + �d + 8��� − �d + 2��1 + ���−2�d + 3 + �d + 2��� , �C5�

B = �d + 2��1 + 2�� + M�1 + ��
�d + 2��1 − �0� − ��11 + d��0 − 5d − 7���−1� + 3�d + 3��2�−1

+ 2M2�2�0
2 −

d + 3

2
�12 + d + 1��−1�1 + ��2 − �d + 2��−1�1 + �� , �C6�

C = 2M2�1 + ��2�2�0
2 −

d + 3

2
�0 + d + 1��d + 2 + �d + 5��� − M�1 + ��
��d + 2 + �d + 5�����11 + d��0 − 5d − 7�

+ ��20 + d�15 − 7�0� + d2�1 − �0� − 28�0� + �d + 2�2�1 − �0�� + 3�d + 3��2�d + 2 + �d + 5��� − 2���d + 2�2

+ �24 + 11d + d2��� + �d + 2���d + 8 + �d + 3��� − �d + 2��1 + ���d + 2 + �d + 3��� , �C7�

D = �d + 2��2� − �� + M�1 + ��
�d + 2��1 − �0� + ��11 + d��0 − 5d − 7��� − 3�d + 3��2 − 2M2�2�0
2 −

d + 3

2
�12 + d + 1��1 + ��2

+ �d + 2��1 + �� . �C8�

Here, �=M0�1−�−1�. It must be noticed that Eqs. �C1�–�C8�
have been obtained by taking Maxwellian distributions for
the reference homogeneous cooling state distributions f �0�

and f0
�0�.

It only remains to evaluate the collision integrals defining
the collision frequencies �

2
* and �

3
*. To compute them, we

use the property

	 dv1h�v1�J0
�0��V1�F,G� = 	0

�0��̄d−1	 dv1	 dv2F�v1�G�v2�

�	 d�̂ ���̂ · g���̂ · g��h�V1��

− h�V1�� , �C9�

with

V1� = V1 − M�1 + �0���̂ · g��̂ . �C10�

Use of this property in Eq. �B4� gives

�2
* =

2��d−1�/2

d��d + 3

2
��

�̄

�
�d−1

	0
�0�

�M�1 + �0��1+d/2	 dc1	 dc2xe−�c1
2−c2

2��c1
2 −

d + 2

2
�

��x · c1� , �C11�

where ci=vi /v0, x=g /v0, and we have taken the Maxwellian
approximation �A8� for f �0�. The integrals appearing in �C10�
can be evaluated by the change of variables 
c1 ,c2�→ 
x ,y�,
where y=�c1+c2, the Jacobian being �1+��−d. With this
change the integrals can be easily performed and the final
result is

�2
* =

��d−1�/2

d��d/2�
� �̄

�
�d−1

	0
�0�M�1 + �0����1 + ���−1/2.

�C12�

Similarly, the reduced collision frequency �
3
* is given by

�3
* = −

��d−1�/2

d��d/2�
� �̄

�
�d−1

	0
�0� M

2

M0
�1 + �0��3/2�1 + ��−1/2.

�C13�

APPENDIX D: MODIFIED SONINE APPROXIMATION

The expression for the kinetic diffusion coefficient D
0
*

derived from a modified version of the first Sonine approxi-
mation recently proposed �25,48� is displayed in this appen-
dix. This coefficient is given by

D0
* =

�

�
D
* −

1

2

*

. �D1�

Here,
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* =
�2��d−1�/2

d��d/2�
	�0��1 − �2��1 +

3

32
e� , �D2�

where e is the fourth cumulant of the gas distribution func-
tion f �0�. It measures the departure of f �0� from its Maxwell-
ian form and its expression is �61�

e��� =
32�1 − ���1 − 2�2�

9 + 24d − �41 − d�� + 30�2�1 − ��
. �D3�

The �reduced� collision frequency �
D
* is given by �25�

�
D
* =

2��d−1�/2

d��d/2�
� �̄

�
�d−1

	0
�0�M�1 + �0��1 + �

�
�1/2

��1 +
1

16

�3 + 4��e0 − �2e

�1 + ��2 � , �D4�

where e0 is the corresponding fourth cumulant for the distri-
bution function f0

�0� of the intruder. Its explicit form can be
found in the Appendix of Ref. �62�.
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